6 research outputs found

    One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency

    Get PDF
    PURPOSE: To assess olipudase alfa enzyme replacement therapy for non–central nervous system manifestations of acid sphingomyelinase deficiency (ASMD) in children. METHODS: This phase 1/2, international, multicenter, open-label trial (ASCEND-Peds/NCT02292654) administered intravenous olipudase alfa every 2 weeks with intrapatient dose escalation to 3 mg/kg. Primary outcome was safety through week 64. Secondary outcomes included pharmacokinetics, spleen and liver volumes, lung diffusing capacity (DLCO), lipid profiles, and height through week 52. RESULTS: Twenty patients were enrolled: four adolescents (12–17 years), nine children (6–11 years), and seven infants/early child (1–5 years). Most adverse events were mild or moderate, including infusion-associated reactions (primarily urticaria, pyrexia, and/or vomiting) in 11 patients. Three patients had serious treatment-related events: one with transient asymptomatic alanine aminotransferase increases, another with urticaria and rash (antidrug antibody positive [ADA+]), and a third with an anaphylactic reaction (ADA+) who underwent desensitization and reached the 3 mg/kg maintenance dose. Mean splenomegaly and hepatomegaly improved by >40% (p < 0.0001). Mean % predicted DLCO improved by 32.9% (p = 0.0053) in patients able to perform the test. Lipid profiles and elevated liver transaminase levels normalized. Mean height Z-scores improved by 0.56 (p < 0.0001). CONCLUSION: In this study in children with chronic ASMD, olipudase alfa was generally well-tolerated with significant, comprehensive improvements in disease pathology across a range of clinically relevant endpoints

    Long-term safety and clinical outcomes of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency : two-year results

    Get PDF
    Background Acid sphingomyelinase deficiency (ASMD) is a lysosomal disorder caused by deficiency of acid sphingomyelinase (ASM) leading to the accumulation of sphingomyelin (SM) in a variety of cell types. Lysosphingomyelin (LysoSM) is the de-acetylated form of SM and it has been shown as a biomarker for ASMD in tissues, plasma, and dried blood spots (DBS) and lysosphingomyelin-509 (LysoSM509) is the carboxylated analogue of LysoSM. High levels of Lysosphingomyelin 509 (LysoSM509) have also been shown in ASMD patients. In this study, we report the utility of the quantification of LysoSM and LysoSM509 in DBS of patients from Latin America with ASMD by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Results DBS samples from 14 ASMD patients were compared with 15 controls, and 44 general newborns. All patients had their diagnosis confirmed by the quantification of ASM and the measurement of the activity of chitotriosidase. All patients had significantly higher levels of lysoSM and lysoSM509 compared to controls and general newborns. Conclusions The quantification of lysosphingolipids in DBS is a valuable tool for the diagnosis of ASMD patients and lysoSM can be useful in the differential diagnosis with NPC. This method is also valuable in the ASMD newborn screening process

    Quantitative Systems Pharmacology Modeling of Acid Sphingomyelinase Deficiency and the Enzyme Replacement Therapy Olipudase Alfa Is an Innovative Tool for Linking Pathophysiology and Pharmacology

    No full text
    Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with heterogeneous clinical manifestations, including hepatosplenomegaly and infiltrative pulmonary disease, and is associated with significant morbidity and mortality. Olipudase alfa (recombinant human acid sphingomyelinase) is an enzyme replacement therapy under development for the non‐neurological manifestations of ASMD. We present a quantitative systems pharmacology (QSP) model supporting the clinical development of olipudase alfa. The model is multiscale and mechanistic, linking the enzymatic deficiency driving the disease to molecular‐level, cellular‐level, and organ‐level effects. Model development was informed by natural history, and preclinical and clinical studies. By considering patient‐specific pharmacokinetic (PK) profiles and indicators of disease severity, the model describes pharmacodynamic (PD) and clinical end points for individual patients. The ASMD QSP model provides a platform for quantitatively assessing systemic pharmacological effects in adult and pediatric patients, and explaining variability within and across these patient populations, thereby supporting the extrapolation of treatment response from adults to pediatrics
    corecore